

Wisconsin Biology Technical Note 8

Pollinator Biology and Habitat

INTRODUCTION

This technical note provides information on how to plan for, protect, and create habitat for pollinators in agricultural settings. Pollinators are an integral part of our environment and our agricultural systems; they are important in 35% of global crop production. Animal pollinators include bees, butterflies, moths, wasps, flies, beetles, ants, bats and hummingbirds. This technical note focuses on native bees, the most important pollinators in temperate North America, but also addresses the habitat needs of butterflies and, to a lesser degree, other beneficial insects.

Worldwide, there are an estimated 20,000 species of bees, with approximately 4,000 species native to the United States. The non-native European honey bee (Apis mellifera) is the most important crop pollinator in the United States. However, the number of honey bee colonies is in decline because of disease and other factors, making native pollinators even more important to the future of agriculture. Native bees provide free pollination services, and are often specialized for foraging on particular flowers, such as squash, berries, or orchard crops. This specialization results in more efficient pollination and the production of larger and more abundant fruit from certain crops. Native bees contribute an estimated \$3 billion worth of crop pollination annually to the U.S. economy.

Undeveloped areas on and close to farms can serve as long-term refugia for native wild pollinators. Protecting, enhancing or providing habitat is the best way to conserve native pollinators and, at the same time, provide pollen and nectar resources that support local honey bees; on farms with sufficient natural habitat, native pollinators can provide all of the pollination for some crops.

Habitat enhancement for native pollinators on farms, especially with native plants, provides multiple benefits. In addition to supporting pollinators, native plant habitat will attract beneficial insects that predate on crop pests and lessen the need for pesticides on your farm. Pollinator habitat can also provide habitat for other wildlife, such as birds, serve as windbreaks, help stabilize the soil, and improve water quality.

Pollinators have two basic habitat needs: a diversity of flowering native or naturalized plants, and egglaying or nesting sites. The NRCS can assist landowners with providing adequate pollinator habitat by, for example, suggesting locally appropriate plants and offering advice on how to provide nesting or egg-laying habitat.

This document provides a three step approach to pollinator conservation: (1) advice on recognizing existing pollinator habitat, (2) steps to protect pollinators and existing habitat, and (3) methods to further enhance or restore habitat for pollinators.

Bumblebee on goldenrod

PART I RECOGNIZING EXISTING POLLINATOR HABITAT

Many growers may already have an abundance of habitat for native pollinators on or near their land; having semi-natural or natural habitat available significantly increases pollinator populations. Marginal lands such as field edges, hedgerows, subirrigated areas, and drainage ditches offer both nesting and foraging sites. Woodlots, conservation areas, utility easements, farm roads, and other untilled areas may also contain good habitat. Often, marginal areas or poor quality soils, less fit for crops, may be useful instead as pollinator habitat. Provided is advice on recognizing specific habitat resources so that they can be factored into farm systems planning.

Existing Plant Composition

When assessing pollen and nectar resources, it is important to look at all of the potential plant resources on and around a landowner or farmer's property, and which plants are heavily visited by bees and other pollinators. These plants include insectpollinated crops, as well as the flowers and "weeds," in buffer areas, forest edges, hedgerows, roadsides, natural areas, fallowed fields, etc. Insect-pollinated crops may supply abundant forage for short periods of time, and such flowering crops should be factored into an overall farm plan if a grower is interested in supporting wild pollinators. However, for pollinators to be most productive, nectar and pollen resources are needed outside the period of crop bloom.

As long as a plant is not a noxious weed or invasive species that should be removed or controlled, producers might consider letting some of the native or non-native forbs that are currently present on site to bloom prior to their crop bloom, mow them during crop bloom, then let them bloom again afterward. For example, dandelions, clover, and other non-native plants are often good pollinator plants. Forbs can be mowed during crop bloom; however, one must weigh benefits to crop pollination against potential negative effects on ground nesting wildlife. Growers may also allow some salad and cabbage crops to bolt. In addition to pollinators, the predators and parasitoids of pests are attracted to the flowers of arugula, chervil, chicory, mustards and other greens, supporting pest management.

Carpenter bee on bergamot

When evaluating existing plant communities on the margins of cropland, a special effort should be made to conserve very early and very late blooming plants. Early flowering plants provide an important food

source for bees emerging from hibernation, and late flowering plants help bumble bees build up their energy reserves before entering winter dormancy.

Keep in mind that small bees may only fly a couple hundred meters, while large bees, such as bumble bees, easily forage a mile or more from their nest. Therefore, taken together, a diversity of flowering crops, wild plants on field margins, and plants up to a half mile away on adjacent land can provide the sequentially blooming supply of flowers necessary to support a resident population of pollinators.

Nesting and Overwintering Sites

Bees need nest sites. Protecting or providing nest sites is as important, if not more important, as providing flowers for supporting populations of native bees. Similarly, caterpillar hostplants are necessary for strong butterfly populations, if that is a management goal.

The ideal is to have nesting and forage resources in the same habitat patch, but bees are able to adapt to landscapes in which nesting and forage resources are separated. However, it is important that these two key habitat components are not too far apart.

Native bees often nest in inconspicuous locations. For example, many excavate tunnels in bare soil, others occupy tree cavities, and a few even chew out the soft pith of the stems of plants like elderberry or blackberry to make nests. It is important to retain as many naturally occurring sites as possible and to create new ones where appropriate.

Most of North America's native bee species (about 70 percent, or very roughly 2,800 species) are ground nesters. These bees usually need direct access to the soil surface to excavate and access their nests. Ground-nesting bees seldom nest in rich soils, so poor quality sandy or loamy soils may provide fine sites. The great majority of ground-nesting bees are solitary, though some will share the nest entrance or cooperate to excavate and supply the nest. Still other species will nest independently, but in large aggregations with as many as 100s or 1000s of bees excavating nests in the same area.

Approximately 30 percent (around 1,200 species) of bees in North America are wood nesters. These are almost exclusively solitary. Generally, these bees nest in abandoned beetle tunnels in logs, stumps, and snags. A few can chew out the centers of woody plant stems and twigs, such as elderberry, sumac, and in the case of the large carpenter bee, even soft pines. Dead limbs, logs, or snags should be preserved wherever possible. Some wood-nesters also use materials such as mud, leaf pieces, or tree resin to construct brood cells in their nests.

Bumble bees are the native species usually considered to be social. There are about 45 species in North America. They nest in small cavities, such as abandoned rodent nests under grass tussocks or in the ground. Leaving patches of rough undisturbed grass in which rodents can nest will create future nest sites for bumble bees. Bunch grasses tend to provide better nesting habitat than does sod-forming varieties.

A secondary benefit of flower-rich foraging habitats is the provision of egg-laying sites for butterflies and moths. They lay their eggs on the plant on which their larva will feed once it hatches. Some butterflies may rely on plants of a single species or genus for host-plants (the monarch is an example, feeding only on species of milkweed, *Asclepias* sp.), whereas others may exploit a wide range of plants, such as some swallowtails (*Papilio* sp.), whose larvae can eat a range of trees, shrubs, and forbs. In order to provide egg-laying habitat for the highest number of butterflies and moths, growers should first provide plants that can be used by a number of species. Later those plants can be supplemented with host-plants for more specialized species. Consult a books or websites on Wisconsin's butterfly fauna to find out about species' specific needs.

Figure 1. From: Agroforestry Note - 34: "Enhancing Nest Sites for Native Bee Crop Pollinators"

 Table 1

 General native pollinator habitat requirements

Pollinator	Food	Shelter				
Solitary bees	Nectar and pollen	Most nest in bare or partially vegetated, well-drained soil; many others nest in narrow tunnels in dead standing trees, or excavate nests within the pith of stems and twigs; some construct domed nests of mud, plant resins, saps, or gums on the surface of rocks or trees				
Bumble bees	Nectar and pollen	Most nest in small cavities (approx. softball size), often underground in abandoned rodent nests or under clumps of grass, but can be in hollow trees, bird nests, or walls				
Butterflies and Moths - Egg	Non-feeding stage	Usually on or near larval host plant				
Butterflies and Moths - Caterpillar	Leaves of larval host plants	Larval host plants				
Butterflies and Moths - Pupa	Non-feeding stage	Protected site such as a bush, tall grass, a pile of leaves or sticks or, in the case of some moths, underground				
Butterflies and Moths - Adult	Nectar; some males obtain nutrients, minerals, and salt from rotting fruit, tree sap, animal dung and urine, carrion, clay deposits, and mud puddles	Protected site such as a tree, bush, tall grass, or a pile of leaves, sticks or rocks				
Hummingbirds	Nectar, insects, tree sap, spiders, caterpillars, aphids, insect eggs, and willow catkins	Trees, shrubs, and vines. Typically need red, deep- throated flowers, such as twin berry or penstemons				

[Adapted from: Native Pollinators. Feb. 2006. Fish and Wildlife Habitat Management Leaflet. No. 34.]

PART II. PROTECTING POLLINATORS AND THEIR HABITAT

When farmers and landowners recognize the potential pollinator habitat on their land, they can then work to protect these resources. In addition to conserving the food and nest sources of their resident pollinators, farmers can take an active role in reducing mortality of the pollinators themselves. While insecticides are an obvious threat to beneficial insects like bees, other farm operations or disturbance, such as burning and tilling, can also be lethal to pollinators.

Minimizing Pesticide Use

Pesticides are detrimental to a healthy community of native pollinators. Insecticides not only kill pollinators, but sub-lethal doses can affect their foraging and nesting behaviors, often preventing pollination. Herbicides can kill plants that pollinators depend on when crops are not in bloom, thus reducing the amount of foraging and egg-laying resources available.

If pesticide use cannot be avoided, products should be applied directly on target plants to prevent drift, and broad-spectrum chemicals should be avoided if at all possible. Similarly, crops should not be sprayed while in bloom and fields should be kept weed free (or mowed just prior to insecticide applications) to discourage pollinators from venturing into the crop if it needs to be sprayed outside of the bloom period. Nighttime spraving, when bees are not foraging, is one way to reduce bee mortality. Periods of low temperatures may also be good for spraying since many bees are less active. However the residual toxicity of many pesticides tends to last longer in cool temperatures. For example, dewy nights may cause an insecticide to remain wet on the foliage and be more toxic to bees the following morning, so exercise caution.

In general, while pesticide labels may list hazards to honey bees, potential dangers to native bees are often not listed. For example, many native bees are much smaller in size than honey bees and affected by lower doses. Also, honey bee colonies may be covered or moved from a field, whereas wild natives will continue to forage and nest in spray areas.

The use of selective insecticides that target a narrow range of insects, such as *Bacillus thuringiensis (Bt)* for moth caterpillars, is one way to reduce or prevent harm to beneficial insects like bees. Generally dusts and fine powders that may become trapped in the pollen collecting hairs of bees and consequently fed to developing larvae are more dangerous than liquid formulations. Alternatives to insecticides are also available for some pests, such as pheromones for mating disruption, and kaolin clay barriers for fruit crops. Local cooperative extension personnel can often assist with the selection of less toxic pesticides.

Landowners who encourage native plants for pollinator habitat will inevitably be providing habitat that also will host many beneficial insects that help control pests naturally, and may come to depend less on pesticides.

In addition to providing pollinator habitat, windbreaks, hedgerows, and conservation headlands can be effective barriers to reduce pesticide drift from adjacent fields. Spray drift can occur either as spray droplets or vapors (when a volatile liquid changes to a gas). Factors effecting drift include weather, application method, equipment settings, and spray formulation. Weather related drift increases with temperature, wind velocity, convection air currents, and during temperature inversions.

Wind related drift can be minimized by spraying during early morning or in the evening when wind velocity is often lower. However even a light wind can cause considerable drift. Pesticide labels will occasionally provide specific guidelines on acceptable wind velocities for spraying a particular product.

Midday spraying is also less desirable because as the ground warms, rising air can lift the spray particles in vertical convection currents. These droplets may remain aloft for some time, and can travel many miles. Similarly, during temperature inversions spray droplets become trapped in a cool lower air mass and move laterally above the ground. Inversions often occur when cool night temperatures follow hot daytime temperatures, and are usually worst in early morning before the ground warms. Low humidity and high temperature conditions also promote drift through the evaporation of spray droplets and the corresponding reduction of particle size. Optimal spray conditions for reducing drift occur when the air is slightly unstable with a very mild steady wind.

Spray application methods and equipment settings also strongly influence the potential for drift. Since small droplets are most likely to drift long distances, aerial applications and mist blowers should be avoided whenever possible. Standard boom sprayers should be operated at the lowest effective pressure and with the nozzles set as low as possible. For example, drop nozzles can be used to deliver insecticide within the crop canopy where it is less likely to be carried by wind currents.

Regardless of the chemical or type of application equipment used, sprayers should be properly calibrated to ensure that excess amounts of pesticide are not applied.

Nozzle type also has a great influence on the amount of drift a sprayer produces. Turbo jet, raindrop, and air-induction nozzles produce less drift than conventional nozzles. Standard flat fan or hollow cone nozzles are generally poor choices. Select nozzles capable of operating at low pressures (15 to 30 psi) to produce larger, heavier droplets.

Finally, oil-based chemical carriers produce smaller, lighter, droplets than water carriers and should also be avoided when possible. Consider using thickening agents if they are compatible with your pesticide.

<u>Minimizing the Impact of Mowing, Haying,</u> <u>Burning, or Grazing</u>

Only a portion of pollinator habitat should be burned, mowed, grazed, or hayed at any one time in order to protect overwintering pollinators, foraging larvae and adults, as well as other wildlife. This will allow for recolonization of the disturbed area from nearby undisturbed refugia, an important factor in the recovery of pollinator populations after disturbance. In order to maximize foraging and egg-laying opportunities, maintenance activities should be avoided while plants are in flower. Ideally, mowing or haying should be done only in the fall or winter.

Protecting Ground Nesting Bees

In order to protect nest sites of ground-nesting bees, tilling and flood-irrigating areas of bare or partially bare ground that may be occupied by nesting bees should be avoided. Grazing such areas can also disturb ground nests. Similarly, using fumigants like Chloropicrin for the control of soil borne crop pathogens (such as *Verticillium* wilt), or covering large areas with plastic mulch could be detrimental to beneficial ground nesting insects like bees.

Weed control alternatives to tillage include the use of selective crop herbicides, flame weeders, and hooded sprayers for between row herbicide applications.

Protecting Tunnel-Nesting Bees

Tunnel-nesting bees will make their homes in the abandoned tunnels of wood-boring beetles and the pithy centers of many woody plant stems. Allowing snags and dead trees to stand, so long as they do not pose a risk to property or people, and protecting shrubs with pithy or hollow stems, such as elderberry, raspberry, black berry, box elder, will go a long way towards supporting these solitary bees.

PART III ENHANCING AND DEVELOPING NEW POLLINATOR HABITAT

Landowners who want to take a more active role in increasing their population of resident pollinators can increase the available foraging habitat to include a range of plants that bloom and provide abundant sources of pollen and nectar throughout spring, summer, and fall.

Such habitat can take the form of designated pollinator meadows ("bee pastures"), demonstration gardens, orchard understory plantings, hedgerows and windbreaks with flowering trees and shrubs, riparian and rangeland re-vegetation efforts, flowering cover crops or green manures, and countless other similar efforts.

Where possible, local native plants are often preferred for their ease of establishment, greater wildlife value, and their evolutionary mutualism with native pollinators. Non-native plants may be suitable however on disturbed sites, for specialty uses such as cover cropping, and where native plants are not available. Mixtures of native and non-native plants are also possible, so long as non-native species are naturalized and not invasive.

Site Selection

Site selection for installing new pollinatorenhancement habitat should begin with a thorough assessment of exposure and soil conditions, but also must take into account land use and available resources.

Entrances to these ground nesting bee nest resemble ant hills but have larger entrances.

ASPECT: In general, areas of level ground, with full sun throughout the day, and good air circulation offer the most flexibility. East and south-facing slopes may also be acceptable as long as erosion is controlled during the installation process. Unless the site is located near a large body of water, west-facing slopes in many climates are often subjected to hot afternoon sunlight, and drying winds. Under such conditions west-facing slopes tend to be naturally dominated by grasses, which are of little food value to pollinators, but may host nest sites for ground-nesting bees and bumble bees. North-facing slopes are often cooler and tend to be dominated by trees.

SUN EXPOSURE: Since some plants require full sun or shaded conditions to thrive, the planting design should allow for sun-loving plants to remain in full sun as the habitat matures. Plantings can also be installed in several phases, for example allowing trees and shrubs to develop an over-story prior to planting shade-loving herbaceous plants below. Generally, plants will flower more, and thus provide greater amounts of nectar and pollen, when they receive more sunlight than when they are fully shaded.

SOIL CHARACTERISTICS: Soil type is also an important consideration when selecting a site, with some plants favoring particular soil textures such as sand, silt, clay, or loam. Drainage, salinity, pH, organic content, bulk density, and compaction are some of the other factors that will influence plant establishment. Many of these factors can be determined from local soil surveys, and the NRCS Web Soil Survey

(<u>http://websoilsurvey.nrcs.usda.gov/app/</u>). Planning should emphasize those plants that will be adapted for the particular soil conditions faced.

Fertility, soil pathogens, the presence of rhizobium bacteria, and previous herbicide use should also be considered during the planning process. Soil fertility will be most critical during early plant establishment, especially on previously cropped land. As the habitat matures, few if any inputs should be required, especially if native plants are selected. Similarly, previously cropped land may harbor soil borne pathogens that may inhibit plant development. Where such conditions exist, pathogen-resistant plant species should be considered. Conversely some soil microorganisms, such as rhizobium bacteria, are essential for the successful establishment of certain types of plants, legumes for example. If rhizobium bacteria are absent in the soil, specially inoculated seed is often available. Finally, herbicides like atrazine and trifluralin can inhibit seed germination. These chemicals, soil pathogens, beneficial microorganisms, and soil fertility can all be tested for by state, and extension soil laboratories.

ADJACENT LAND USE: Along with exposure and soil conditions, adjacent plant communities and existing land use activities should be considered. For example even if weeds are eliminated prior to planting, the presence of invasive plants adjacent to the restored habitat may result in a persistent problem that requires ongoing management. Adjacent cropland can also present a challenge unless the enhancement site is protected from herbicide drift.

USING MARGINAL LAND: Some otherwise marginal land, such as septic fields and mound systems, can be perfectly suited for pollinator plantings. While trees may be problematic on such sites, forbs will generally not penetrate pipes or clog systems. As an added benefit, plants on these sites may help absorb excess nutrients from wastewater. Ditches, field buffer strips, and waterways can also be planted with pollinator-friendly plants rather than turf grass.

SIZE AND SHAPE: The larger the planting area, the greater the potential benefit to pollinator species. An area considered for enhancement should be at least one half acre area in size, with a size of two acres providing even greater benefits. With herbaceous plantings, large, square planting blocks will minimize the edge around the enhancement site and thus reduce susceptibility to invasion by weeds surrounding the perimeter. However, linear corridor plantings (e.g. along a stream or a hedgerow, or a crop border) will often be more practical.

<u>Habitat Design</u>

When designing a pollinator planting, first consider the overall landscape and how the new habitat will function with adjacent crops. From there focus on the specifics of the planting, such as species diversity, bloom time, plant density, and the inclusion of grasses for weed control and soil stabilization.

LANDSCAPE CONSIDERATIONS: The first step in habitat design should be a consideration of how the area can work with adjacent landscape features.

For example, is the new habitat area located close enough to crops requiring pollination to be of significant value? Remember that flight distances of small native bees might be as little as 500 feet, while larger bumble bees may forage up to a mile away from their nest. Thus, crops that depend heavily upon bumble bees for pollination, such as cranberries or blueberries, can have pollinator habitat located some distance from the field. This sort of arrangement would minimize the encroachment into the crop by unwanted pollinator plants while still supporting a strong local population of bees.

Similarly, is the new habitat located near existing pollinator populations that can "seed" the new area? For example, fallow areas, existing wildlands, or unmanaged landscapes can all make a good starting place for habitat enhancement. In some cases these areas may already have abundant nest sites, such as fallen trees or stable ground, but lack the floral resources to support a large pollinator population. Be aware of these existing habitats and consider improving them with additional pollinator plants or nesting sites.

DIVERSE PLANTINGS: Diversity is a critical factor in the design of pollinator enhancement areas. Flowers should be available throughout the entire growing season, or at least whenever adjacent crops needing pollination are not in bloom. It is desirable to include a diversity of plants with different flower colors, sizes and shapes as well as varying plant heights and growth habits to encourage the greatest numbers and diversity of pollinators. Most bee species are generalists, feeding on a range of plants throughout their life cycle. Many others, including some important crop pollinators, only forage on a single family or even genus of plants.

Butterflies have a long tongue that can probe tubular flowers. Therefore, choose plants with a variety flower shapes in order to attract a diversity of pollinators. Color is another consideration. Bees typically visit flowers that are purple, violet, yellow, white, and blue. Butterflies visit a similarly wide range of colors, including red, whereas flies are primarily attracted to white and yellow flowers. Thus, by having several plant species flowering at once, and a sequence of plants flowering through spring, summer, and fall, habitat enhancements can support a wide range of pollinator species that fly at different times of the season.

Sunflowers are a prolific summer bee plant for Wisconsin.

Diverse plantings that resemble natural native plant communities are also the most likely to resist pest, disease, and weed epidemics and thus will confer the most pollinator benefits over time. Species found in association with each other in local natural areas are likely to have the same light, moisture, and nutrient needs such that when these species are put into plantings they are more likely to thrive together.

The level of plant community diversity can be measured in several ways. One system used in managed woody plant ecosystems is the the *10-20-30 Rule*. This rule states that a stable managed plant community (i.e. one able to resist insect and disease epidemics) should contain no more than 10% of a single plant species, no more than 20% of a single genera, and no more than 30% of a single family .

PLANT DENSITY AND BLOOM TIME: Plant diversity should also be measured by the number of plants flowering at any given time. Researchers in California have found that when eight or more species of plants with different bloom times are grouped together at a single site, they tend to attract a significantly greater abundance and diversity of bee species. Therefore, at least three different pollinator plants within each of three blooming periods are recommended (i.e. early, mid or late season - refer to tables 2A through 4 for more information). Under this plan at least nine blooming plants should be established in pollinator enhancement sites, although in some studies bee diversity continues to rise with increasing plant diversity and only starts to level out when twenty or more different flower species occur at a single site.

It is especially important to include plants that flower early in the season. Many native bees, such as bumble bees and some sweat bees, produce multiple generations each year. More forage available early in the season will lead to greater reproduction and more bees in the middle and end of the year. Early forage may also encourage bumble bee queens that are emerging from hibernation to start their nests nearby, or simply increase the success rate of nearby nests. Conversely, it is also important to include plants that flower late in the season to ensure that queen bumble bees are strong and numerous going into winter hibernation.

Plant clusters of a single species when possible. Research suggests that clump-plantings of at least three foot by three foot blocks of an individual species (that form a solid block of color when in flower) are more attractive to pollinators than when a species is widely and randomly dispersed in smaller clumps. Even larger single-species clumps (e.g. a single species cluster of perennials or shrubs more than 25 square feet in size) may be more even ideal for attracting pollinators and providing efficient foraging.

INCLUSION OF NON-FLOWERING PLANTS: Herbaceous plantings should include at least one native bunch grass or sedge adapted to the site in addition to the three or more forbs from each of the three bloom-periods (refer to the table 2C for species of grasses and sedges). This scenario results in a minimum of 10 plant species per planting. Strive for an herbaceous plant community that mimics a local native ecosystem assemblage of plant density and diversity (generally with a greater diversity of forbs) to maximize pollinator habitat. Most native plant communities generally contain at least one dominant grass or sedge in their compositions. These grasses and sedges often provide forage resources for beneficial insects (including larval growth stages of native butterflies), potential nesting sites for colonies of bumble bees, and possible overwintering sites for beneficial insects, such as predaceous ground beetles. The combination of grasses and forbs also form a tight living mass that will resist weed colonization. Grasses are also essential to produce conditions suitable for burning, if that is part of the long-term management plan.

Care should be taken however that grasses do not take over pollinator sites. Anecdotal evidence suggests that tall grasses crowd out forbs more easily than short grasses, and that cool season grasses are more competitive against many forbs than warm season grasses. Seeding rates for grasses should also not exceed seeding rates for forbs. Fall (rather than spring) planting will also favor forb development over warm season grasses.

Plant Selection and Seed Sources

Choose plants with soil and sunlight requirements that are compatible with the site where they will be planted. The plant tables 2A through 4 provide a starting point for selecting widely distributed and regionally appropriate pollinator plants. If these plants are not available, other closely related species might serve as suitable replacements.

NATIVE PLANTS: Native plants are adapted to the local climate and soil conditions where they naturally occur. Native pollinators are generally adapted to the native plants found in their habitats. Conversely, some common horticultural plants do not provide sufficient pollen or nectar rewards to support large pollinator populations. Similarly, non-native plants may become invasive and colonize new regions at the expense of diverse native plant communities.

Native plants are advantageous because they generally: (1) do not require fertilizers and require fewer pesticides for maintenance; (2) require less water than other non-native plantings; (3) provide permanent shelter and food for wildlife; (4) are less likely to become invasive than non-native plants; and (5) promote local native biological diversity.

Using native plants in NRCS cost-share programs also will help provide connectivity for native plant populations, particularly in regions with fragmented habitats. By providing connectivity of plant species across the landscape, the potential is increased for these species to move in the landscape in relation to probable future climatic shifts.

SEED SOURCES: Where available and economical, native plants and seed should be procured from "local eco-type" providers. Local eco-type refers to seed and plant stock harvested from a local source (often within a few hundred miles). Plants selected from local sources will generally establish and grow well because they are adapted to the local climatic conditions. Depending on the location, state or local regulations may also govern the transfer of plant materials beyond a certain distance (sometimes called *Seed Transfer Zones*). Seeding rates are based on Pure Live Seed Certification. Seed certification guarantees a number of quality standards, including proper species, germination rate, and a minimum of weed seed or inert material.

TRANSPLANTS: In addition to seed, enhancement sites can be planted with plugs, or in the case of woody

plants, container grown, containerized, bare-root, or balled and burlaped materials.

Herbaceous plants purchased as plugs have the advantage of rapid establishment and earlier flowering, although the cost of using plugs can be prohibitive in large plantings. Transplanted forbs also typically undergo a period of shock during which they may need mulching and supplemental water to insure survival.

Woody plants may also undergo a period of transplant shock and need similar care. In general, container grown and balled and burlaped woody plants have a higher survival rate and are available in larger sizes. They are also generally more expensive than bare-root or containerized plants. Containerized trees and shrubs are plants that were either hand-dug from the ground in a nursery setting, or were harvested as bare-root seedlings, then placed in a container. Although the cost of containerized plants is typically low, they should be examined for sufficient root mass before purchase to ensure successful establishment.

AVOID NUISANCE PLANTS: When selecting plants, avoid ones that act as alternate or intermediate hosts for crop pests and diseases. For example, many rust fungi require two unrelated plant species to complete their life cycle. Similarly economically important agricultural plants (or closely related species) are generally a poor choice for enhancement areas, because without intensive management, they may serve as a host reservoir for insect pests and crop diseases.

APPLICATIONS FOR NON-NATIVE PLANT MATERIALS: While in most cases native plants are preferred, nonnative ones may be suitable for some applications, such as annual cover crops, buffers between crop fields and adjacent native plantings, or short-term low cost insectary plantings that also attract beneficial insects which predate or parasitize crop pests . For more information on suitable non-native plants for pollinators, see tables 3 and 4.

A mason bee closing the entrance to her nest with mud after laying a series eggs in the tube.

Creating Artificial Nest Sites

There are many successful ways to provide nesting sites for different kinds of native bees, from drilled wooden blocks to bundles of reeds to bare ground or adobe bricks. The Xerces Society's *Pollinator Conservation Handbook* provides detailed information on how to build artificial nest sites. Generally, increasing nesting opportunities will result in at least a short-term increase in bee numbers.

Most native bees nest in the ground. The requirements of one species, the alkali bee (*Nomia melanderi*) are so well understood that artificial nesting sites are created commercially to provide reliable crop pollination for alfalfa in eastern Washington and Idaho.

Unlike the alkali bee, the precise conditions needed by most other ground-nesting bees are not well known. However, landowners can create conditions suitable to a variety of species by constructing designated areas of semi-bare ground, or piles of soil stabilized with bunch grasses and wildflowers. Such soil piles might be constructed with soil excavated from drainage ditches or silt traps. Different species of bees prefer different soil conditions, although research shows that many ground nesting bees prefer sandy to sandy loam soils.

In general these constructed ground nest sites should receive direct sunlight, and dense vegetation should be removed regularly, making sure that some patches of bare ground are accessible. Once constructed, these nest locations should be protected from digging and compaction.

Colonization of these nest sites will depend upon which bees are already present in the area, their successful reproduction and population growth, and the suitability of other nearby sites. Ground-nesting bee activity can be difficult to observe because there is often little above ground evidence of the nests. Tunnel entrances usually resemble small ant mounds, and can range in size from less than 1/8 inch in diameter to almost $\frac{1}{2}$ inch in diameter, depending on the species.

In contrast to ground-nesting bees, other species such as leafcutter and mason bees naturally nest in beetle tunnels and similar holes in dead trees. Artificial nests for these species can be created by drilling a series of holes into wooden blocks. A range of hole diameters with encourage a diversity of species, providing pollination services over a longer period of time. Such blocks should be constructed of preservativefree lumber, and the hole depth should be at least 4 inches (up to 6 inches is even better). Holes should not be drilled all the way through the block, and should also be spaced at least ³/₄ inch apart so that bees returning to the block from foraging can easily find their own nest tunnel.

Nest blocks should be hung in a protected location where they receive strong indirect sunlight and are protected from rain. Large blocks tend to be more appealing to bees than small ones, and colonization is often more successful when blocks are attached to a large visible landmark (such as a building), rather than hanging from fence posts or trees.

In addition to wooden blocks, artificial nests can be constructed with bundles of paper straws, cardboard tubes, or sections of reed or bamboo cut so that a natural node forms the inner wall of the tunnel.

Extensive information constructing these types of nests is widely available. In order to be sustainable, artificial nests will need routine management, and regular cleaning to prevent the build-up of bee parasites and diseases.

Management and Maintenance

Many native plants require several seasons before their initial flowering. As they mature, bees, butterflies, and other pollinators like hummingbirds will become increasingly common. Habitat plantings for pollinators should remain undisturbed to the greatest extent possible throughout the growing season so that insects can utilize flower pollen and nectar resources (for adult stages) and vegetative parts of plants for food and cover resources (for immature/larval stages).

After establishment the primary maintenance activity will be the periodic removal of undesirable woody plants and herbaceous weeds. This is often performed through mowing or burning in the early spring prior to the emergence of desirable pollinator plants.

If site maintenance must occur during the growing season in order to maintain the open, species rich habitat preferred by pollinators, establish a system for managing a small percentage (30% or less) of the site each year on a three to five year rotation. This will allow for re-colonization of disturbed habitat from the surrounding area. To protect dormant insects such as butterfly pupae, you should only mow or burn part of the planting in a single season. This should ideally be only one-forth to one third of the overall area, on a three to five year rotation. Similarly, no single area should be burned or mowed more frequently than every two years. To facilitate these limited burns, temporary firebreaks can be created as needed, or they can be designed into the planting from the beginning by planning permanent firebreaks using Conservation Practice Standard 394, Firebreak, to separate the habitat into multiple sections.

Controlled, rotational grazing may also be a viable option for managing the plant community. Grazing should generally occur during the pollinator dormant season and at light intensity, or at least with a long rest-rotation schedule of grazing.

For detailed information on long-term site maintenance for pollinator habitat, that addresses techniques for minimizing the impact of herbicide, fire, grazing, mowing and other management activities, download a copy of <u>Pollinators in Natural</u> <u>Areas: A Primer on Habitat Management.</u> http://www.xerces.org/Pollinator_Insect_Conservatio n/Managing_Habitat_for_Pollinators.pdf.

Pollinator Habitat and Practices

The Natural Resources Conservation Service supports the use of native species in many conservation practices that involve seeding or transplanting. Selecting pollinator-friendly native species for these practices can provide added conservation benefits. Many conservation practices also can support the inclusion or management of nest sites for native bees.

Many of these practices have a purpose or consideration for enhancing wildlife (that can include pollinators). However, the enhancement for wildlife should not compromise other intended function of the practice. For example, plants attractive to pollinators could be used in a grassed waterway practice, but the planting should not interfere with the hydraulic function of the practice and primary objective of stabilizing the waterway against erosion.

See Tables 1A and 1B for some practices that could include pollinator friendly supplements.

 Table 1A

 Pollinator Habitat Conservation Practice Alternatives

Conservation Practice Name (Units)	Code	Pollinator Notes
Channel Bank Vegetation (Ac.)	322	Can include diverse flowering trees, shrubs, and forbs. Channel banks provide a unique opportunity to supply early-flowering willow and, in dry areas, late flowering native forbs (e.g. goldenrod (Solidago spp.).
Conservation Cover (Ac.)	327	Can include diverse forbs (e.g. various legumes) to increase plant diversity and ensure flowers are in bloom for as long as possible, providing nectar and pollen throughout the season.
Conservation Crop Rotation (Ac.)	328	Can include rotation plantings that provide abundant forage for pollinators forbs (e.g. various legumes, buckwheat (<i>Fagopyrum</i> spp.), phacelia (<i>Phacelia</i> spp.), etc.). Moving insect-pollinated crops no more than 250 meters (750 feet) during the rotation may help maintain local populations of native bees that have grown because of a specific crop or conservation cover. Growers may want to consider crop rotations that include a juxiposition of diverse crops with bloom timing that overlaps through the season to support pollinator populations. Growers might also consider eliminating, minimizing insecticides and/or using bee-friendly insecticides in cover crop rotations.
Constructed Wetland (Ac.)	656	Constructed wetlands can include plants that provide pollen and nectar for native bees and other pollinators. Possible plant genera with obligate or facultative wetland species include: <i>Rosa</i> spp., <i>Ribes</i> spp., <i>Salix</i> spp., <i>Rubus</i> spp., <i>Crataegus</i> spp., <i>Spirea</i> spp., <i>Solidago</i> spp., <i>Cornus</i> spp. Look for appropriate wetland plants from these genera for your region.
Contour Buffer Strips (Ac.)	332	Can include diverse legumes or other forbs that provide pollen and nectar for native bees. In addition, the recommendation to mow only every two or three years to benefit wildlife also will benefit nesting bumble bees. To protect bumble bee nests, mowing should occur in the late fall when colonies have died for the year and queens are overwintering.
Cover Crop (Ac.)	340	Can include diverse legumes or other forbs that provide pollen and nectar for native bees. Look for a diverse mix of plant species that overlap in bloom timing to support pollinators throughout the year. Some examples of cover crops that are utilized by bees include clover (<i>Trifolium</i> spp.), phacelia (<i>Phacelia</i> spp.), and buckwheat (<i>Fagopyrum</i> spp.). Many "beneficial insect" cover crop blends include plant species that will also provide forage for pollinators.
Critical Area Planting (Ac.)	342	Can include plant species that provide abundant pollen and nectar for native bees and other pollinators.
Early Successional Habitat Development/Management (Ac.)	647	This management practice is important for maintaining prime open and sunny habitat for pollinators. Note: To minimize damage to pollinator populations, disturbance practices should be implemented only every two to three years and, ideally, on only 30 percent or less of the overall site. This allows for recolonization from non-treated habitat. For example, mowing or burning one-third of the site every two or three years, on a three-year cycle. In addition, when possible, disturbance practices should be implemented when most pollinators are inactive, such as in late fall or winter.

Conservation Practice Name (Units)	Code	Pollinator Notes
Field Porder (Et.)	386	Can include diverse legumes or other forbs that provide pollen and nectar for native bees. Strive for a mix of forbs and shrubs that come into bloom at different times throughout the year. Site management (for example, mowing) should occur in the fall to minimize impacts on pollen and nectar sources used by pollinators.
	380	If a goal is to create potential nesting habitat for bees, mowing, combined with no tillage, can maintain access to the soil surface that may provide nesting habitat for ground-nesting solitary bees. Alternatively, allowing field borders to become overgrown (e.g. with native bunch grasses) may provide nesting habitat for bumble bees.
Filter Strip (Ac.)	393	Can include legumes or other forbs that provide pollen and nectar for native bees. Look for a diverse mix of plant species that come into bloom at different times throughout the year. Site management (for example, mowing or burning) should occur in the fall to minimize impacts on pollinators.
Forest Stand Improvement (Ac.)	666	Can help maintain open understory and forest gaps that support diverse forbs and shrubs that provide pollen and nectar for pollinators. Standing dead trees may be kept or drilled with smooth 4- to 6-inch deep holes to provide nesting sites for bees.
Grassed Waterway (Ac.)	412	Can include diverse legumes or other forbs that provide pollen and nectar for native bees. In dry regions, these sites may be able to support flowering forbs with higher water requirements and thus provide bloom later in the summer.
Hedgerow Planting (Ft.)	422	Can include forbs and shrubs that provide pollen and nectar for native bees. Look for a diverse mix of plant species that come into bloom at different times throughout the year. Bee nesting sites also may be incorporated, including semi-bare ground or wooden block nests. Including strips of unmowed grasses and forbs along the edge of the hedgerow may provide nesting opportunities for bumble bees. This practice also can help reduce drift of pesticides onto areas of pollinator habitat.
Pasture and Hay Planting (Ac.)	512	Can include diverse legumes (e.g. alfalfa, clovers) or other forbs that, when in bloom, provide pollen and nectar for native bees.
Pest Management (Ac.)	595	Biological pest management can include plantings that attract beneficial insects that predate or parasitize crop pests. These plantings can also benefit pollinator species. Plants commonly used for pest management that also benefit bees include: yarrow (Achillea spp.), phacelia (Phacelia spp.), and sunflowers (Helianthus spp.). Can include legumes or other forbs that provide pollen and nectar for native bees. Look for a diverse mix of plant species that come into bloom at different times throughout the year.
		Can greatly benefit pollinators by maintaining open, early successional habitat.
Prescribed Burning (Ac.)	338	Note: It is best if (a) only 30% or less of a site is burned at any one time to allow for recolonization by pollinators from adjacent habitat and (b) if burning occurs when pollinators are least active, such as when most plants have senesced or in the fall.
		Can help maintain late successional habitat and its associated flowering plants. Can help provide for a stable base of pollinator plant species.
Prescribed Grazing (Ac.)	528	Note: Properly managed grazing can sustain and improve all pollinator forage (pollen and nectar sources) and potential nesting sites for ground- nesting and cavity-nesting bees. Provide rest-rotation in pastures/fields during spring and summer when pollinators are most active.

Conservation Practice Name (Units)	Code	Pollinator Notes
Residue and Tillage Management, No-Till/Strip Till/Direct Seed (Ac.)	329	Leaving standing crop residue can protect bees that are nesting in the ground at the base of the plants they pollinate. Tillage digs up these nests (located 0.5 to 3 feet underground) or blocks emergence of new adult bees the proceeding year.
Restoration and Management of Rare and Declining Habitats (Ac.)	643	Can be used to provide diverse locally grown native forage (forbs, shrubs, and trees) and nesting resources for pollinators. Many specialist pollinators that are closely tied to rare plants or habitats may significantly benefit from efforts to protect rare habitat. In addition, certain rare plants require pollinators to reproduce.
		Note: Pollinator plants should only be planted if they were part of the rare ecosystem you are trying to restore.
Riparian Forest Buffer (Ac.)	391	Can include trees, shrubs, and forbs especially chosen to provide pollen and nectar for pollinators. This practice also can help reduce drift of pesticides onto areas of pollinator habitat.
Stream Habitat Improvement and Management (Ac.)	395	Plants chosen for adjoining riparian areas can include trees, shrubs, and forbs that provide pollen and nectar for pollinators. Maximizing plant diversity along riparian corridors will result in more pollinators and other terrestrial insects to feed fish in the streams.
Streambank and Shoreline Protection (Ft.)	580	If vegetation is used for streambank protection, plants can include trees, shrubs, and forbs (for example, willow (<i>Salix</i> spp.), dogwood, (<i>Cornus</i> spp.) and goldenrod (<i>Solidago</i> spp.)) especially chosen to provide pollen and nectar for pollinators.
Stripcropping (Ac.)	585	Can include diverse legumes or other forbs that provide pollen and nectar for native bees. Also, if insect pollinated crops are grown, plants used in adjacent strips of vegetative cover may be carefully chosen to provide a complementary bloom period to the crop, such that the flowers available in the field are extended over a longer period of time.
Tree/Shrub Establishment (Ac.)	612	Can include trees and shrubs especially chosen to provide pollen and nectar for pollinators, or host plants for butterflies.
Upland Wildlife Habitat Management (Ac.)	645	Can include managing for pollinator forage or pollinator nest sites, such as nest blocks or snags for cavity nesting bees, or overgrown grass cover for bumble bees.
Vegetated Treatment Area (Ac.)	635	Can include plants that provide pollen and nectar for pollinators.
Wetland Enhancement (Ac.)	659	Wetland and adjacent upland can include trees, shrubs, and forbs especially chosen to provide pollen and nectar for pollinators. Snags can be protected or nest blocks for bees erected. Some forbs used for enhancement will require pollinators to reproduce.
Wetland Restoration (Ac.)	657	Wetland and adjacent upland can include trees, shrubs, and forbs especially chosen to provide pollen and nectar for pollinators. Snags can be protected or nest blocks for bees erected. Some forbs used for restoration will require pollinators to reproduce.
Wetland Wildlife Habitat Management (Ac.)	644	Wetland and adjacent upland can include trees, shrubs, and forbs especially chosen to provide pollen and nectar for pollinators. Snags can be protected or nest blocks for bees erected.
Windbreak/Shelterbelt Establishment (Ft.)	380	Can include trees, shrubs, and forbs especially chosen to provide pollen and nectar for pollinators. Can also be a site to place nesting structures for native bees. Windbreaks and shelter belts also will help reduce drift of insecticides on to a site.
Windbreak/Shelterbelt Renovation (Ft.)	650	Can include trees, shrubs, and forbs especially chosen to provide pollen and nectar for pollinators. If appropriate, dead trees and snags may be kept or drilled with holes to provide nesting sites for bees.

Table 1B
Pollinator Habitat Needs by Conservation Practices

Pollinator Resource	Code and Conservation Practice Name (Units)
Forage (diverse sources of pollen and nectar that support pollinators from early in the spring to late in the fall)	 322 - Channel Bank Vegetation (Acres) 327 - Conservation Cover (Acres) 328 - Conservation Crop Rotation (Acres) 656 - Constructed Wetland (Acres) 332 - Contour Buffer Strips (Acres) 340 - Cover Crop (Acres) 342 - Critical Area Planting (Acres) 342 - Critical Area Planting (Acres) 343 - Filed Border (Feet) 393 - Filter Strip (Acres) 412 - Grassed Waterway (Acres) 422 - Hedgerow Planting (Feet) 512 - Pasture and Hay Planting (Acres) 595 - Pest Management (Acres) 528 - Prescribed Grazing (Acres) 643 - Restoration and Management of Rare and Declining Habitats (Acres) 391 - Riparian Forest Buffer (Acres) 395 - Stream Habitat Improvement and Management (Acres) 580 - Streambank and Shoreline Protection (Feet) 585 - Stripcropping (Acres) 645 - Upland Wildlife Habitat Management (Acres) 659 - Wetland Enhancement (Acres) 657 - Wetland Restoration (Acres) 644 - Wetland Wildlife Habitat Management (Acres) 380 - Windbreak/Shelterbelt Establishment (Feet)
Nest sites (stable ground, holes in wood, cavities for bumble bees, or overwintering sites for bumble bee queens)	 322 - Channel Bank Vegetation (Acres) 656 - Constructed Wetland (Acres) 332 - Contour Buffer Strips (Acres) 342 - Critical Area Planting (Acres) 386 - Field Border (Feet) 422 - Hedgerow Planting (Feet) 329 - Residue & Tillage Management, No-Till/Strip Till/Direct Seed (Ac.) 643 - Restoration and Management of Rare and Declining Habitats (Acres) 391 - Riparian Forest Buffer (Acres) 612 - Tree/Shrub Establishment (Acres) 645 - Upland Wildlife Habitat Management (Acres) 657 - Wetland Restoration (Acres) 644 - Wetland Wildlife Habitat Management (Acres) 380 - Windbreak/Shelterbelt Establishment (Feet)
Pesticide protection (refuge from spray, buffers to drift, etc.)	 322 - Channel Bank Vegetation (Acres) 656 - Constructed Wetland (Acres) 342 - Critical Area Planting (Acres) 422 - Hedgerow Planting (Feet) 391 - Riparian Forest Buffer (Acres) 657 - Wetland Restoration (Acres) 380 - Windbreak/Shelterbelt Establishment (Feet)
Site management for pollinators	 647 – Early Successional Habitat Development or Management (Acres) 595 – Pest Management (Acres) 338 – Prescribed Burning (Acres) 528 – Prescribed Grazing (Acres) 643 – Restoration and Management of Rare and Declining Habitats (Acres) 645 – Upland Wildlife Habitat Management (Acres) 644 – Wetland Wildlife Habitat Management (Acres)

Plant Species Tables

The following tables provide information about native and non-native trees, shrubs, wildflowers, and grasses to consider for plantings to enhance pollinator habitat. These tables include brief information on bloom timing and the basic cultural needs of the plants. The information provided is a starting point for determining which plants to use for a particular project. To find species that are available and/or hardy for a specific location, consult Wisconsin Agronomy Technical Note 5 and Wisconsin Forestry Technical Note 2. Additional information such as the geographic distribution and cultural requirements for various plants is available from species fact sheets like those found at the USDA PLANTS database (http://plants.usda.gov/java/factSheet).

These tables are not exhaustive; many other plants are good for bees. These lists were limited to those plants thought to require insect pollination and to be relatively widespread and commonly found in the public marketplace as seed or nursery stock.

Native Plant Species

The cost of native plants may appear to be more expensive than non-native alternatives when comparing costs at the nursery, but when the costs of maintenance (e.g. weeding, watering, fertilizing) are calculated over the long-term, native plantings can ultimately be more cost-efficient for pollinator enhancement. Native plantings also give the added benefit of enhancing native biological diversity (e.g. plant and wildlife diversity) and are the logical choice to enhance native pollinators.

TABLE 2A – NATIVE TREES AND SHRUBS FOR

POLLINATOR ENHANCEMENT: Tree and shrub plantings may be designed for a number of concurrent purposes, such as wildlife enhancement, stream stabilization, windbreak, and/or pollinator enhancement. These are just some of the tree and shrub species that you might want to consider, paying close attention to overlapping bloom periods and the appropriate plant for the site conditions.

 TABLE 2B – NATIVE FORBS (WILDFLOWERS):

There is a vast array of native forbs to choose from when designing a pollinator enhancement. These are species that you might consider using at the base of one or both sides of a hedgerow, riparian buffer, windbreaks, alley cropping, field border, filter strip, waterway or pasture planting to enhance conditions for pollinators. These are just some of the plant options that you might want to consider, paying close attention to overlapping bloom periods and the appropriate plant for the site conditions.

TABLE 2C – NATIVE BUNCH GRASSES AND SEDGES (to include in an herbaceous mixture of native forbs): Herbaceous plantings should include at least one native bunch grass or clump-forming sedge adapted to the site in addition to the forbs that will be planted. Including a grass or sedge in the planting mixture will help keep weeds out of the planting area, stabilize the soil, provide overwintering habitat for beneficial insects, forage resources for larval growth stages of some butterflies, and nest sites for bumble bees.

In general warm season bunch grasses (which produce most of their leaf mass in the summer) are more favorable than cool season grasses that grow quickly in the spring, and thus potentially shade out developing forbs. Anecdotal evidence also suggests that tall grasses crowd out forbs more easily than short grasses. Seeding rates for grasses should also not exceed seeding rates for forbs.

Introduced Plant Species

TABLE 3- INSECTARY AND POLLINATOR FRIENDLY COVER CROPS FOR WISCONSIN: A number of nonnative plants used for cover crops, insectaries, green manures, or short-term plantings are productive forage sources for pollinators. Some of these species could become weedy (e.g. able to reproduce and spread) so you will want to choose appropriate species for your needs and monitor their development on your site.

Cover crops are generally established for seasonal vegetative cover and soil conservation. They reduce erosion and weed competition, and improve soil organic material and tilth. They may be part of a rotation as a harvested crop or they may be interplanted between rows (e.g. vineyards) to enhance soil organic matter and nutrients. Nitrogen-fixing legumes are often used in cover crop mixtures to increase soil fertility. Broadleaf cover crops (i.e. forbs) may also provide good pollen or nectar sources for bees and other beneficial insects.

Insectary plantings may be placed as a block inside of a crop, along the borders or just outside of a crop to attract beneficial insects to the crop for biological control (i.e. predators or parasitoids) of crop pests. Beneficial insects can be significantly more abundant in insectary plantings than where such habitat is absent. Some of these plants can also provide good pollen or nectar sources for bees. These may be annual plantings or more permanent plantings along the outer rows within the field or outside but adjacent to the crop field. The principles of enhancement for pollinators also generally apply to insectary plantings – such as including a diversity of flowers that bloom through the entire growing season to provide a steady supply of nectar.

The species suggested in Table 3 are known to be used commonly in farm practices and presumed to be widely available in the marketplace. These plants will generally do best in a full sun location and may require supplemental summer watering. Fertility requirements can vary widely.

TABLE 4- GARDEN PLANTS: This type of planting will generally be a more permanent planting outside but adjacent to cropland. The pollinator habitat enhancement principles will also apply—such as including a diversity of flowers that bloom through the entire growing season to provide a steady supply of nectar and pollen. Also, when selecting plant varieties, keep in mind that the simple-flowered cultivars generally provide greater nectar and pollen rewards than multi-petaled (e.g. double petal) varieties.

The plants suggested below are all commonly available garden plants. These species will generally do best in a full sun location and may require supplemental irrigation and fertilization. Establishment of perennial plants may take a few years, but they will often last for an extended period of time. One strategy is to plant annual and perennial garden plants together, with the annual plants providing immediate benefits the first year, while the perennial plants become established.

Native bee on purple coneflower.

Common Name	Scientific Name	Habitat	Bloom Period	Flower Color	*Height Mature (feet)	Light Needs	*Drought Tolerance	*pH Min.	*pH Max.	*Salinity Tolerance	Notes
False white indigobush	Amorpha fruticosa	WMP, MP, MS, CS	early to mid	purple	18	sun to part shade	moderate	6	8	high	
New Jersey Tea	Ceanothus americanus	MP, DSP, SS	mid	white	3	sun to part shade	low	6.5	7.5	low	
Button Bush	Cephalanthus occidentalis	WP, WMP	late	white	6	sun	low	5	8.5	high	
Hawthorn	Crataegus spp.	DMP, HP, MS, CS	early	white	25	sun	low	6.5	8	moderate	
American Plum	Prunus americana	MS	early	white	15	sun to part shade	moderate	6.5	8.5	low	Can become invasive, spines may puncture tires
Black Willow	Salix nigra	WP, WMP	very early to early	yellow	20	sun	low	5	8	low	Separate male and female plants
Basswood	Tilia americana	MS, CS	mid	white	30	shade to sun	low	6.5	8.5	low	

Table 2A Native Wisconsin Trees and Shrubs for Pollinators

* Heights and tolerances may differ between populations, races, or ecotypes of the same species.
 ** Habitat: Wet Prairie = WP; Wet Mesic Prairie = WMP; Mesic Prairie = MP; Dry Mesic Prairie = DMP; Dry Sand Prairie = DSP; Hill Prairie = HP, Mesic Savanna = MS; Claypan Savanna = CS; Sand Savanna = SS

Table 2B									
Native Wisconsin Forbs for Pollinators									

Common Name	Scientific Name	Habitat	Bloom Period	Flower Color	*Height Mature (feet)	Light Needs	*Drought Toleranc e	*pH Min.	*pH Max	*Salinity Tolerance	Annual, Perennial, or Biennial	Notes
Swamp Red Milkweed	Asclepias incarnata	WP, WMP	mid	pink	5	sun to part shade	low	5	7.5	low	Р	
Butterflyweed	Asclepias tuberosa	SS, MS, SDP, DMP, MP	mid	orange	3	sun to part shade	high	5.5	7.5	high	Р	
Whorled Milkweed	Asclepias verticillata	SDP, DMP	mid	white	2	sun to part shade	high	5.5	7.5	low	Р	
White Wild Indigo	Baptisia leucantha	WMP, MP, DMP	mid	white	4	sun	high	6	7.5	high	Р	
Cream Wild Indigo	Baptisia bracteata	SS, MS, DSP, DMP, MP	early	white	3	sun	high	6	8	high	Р	
Marsh Marigold	Caltha palustris	WP	very early	yellow	2	sun to shade	low	6	8	low	Р	Wetland emergent
Wild Senna	Cassia hebecarpa	WMP, MP, DMP, MS, CS,	mid	yellow	5	sun to part shade	low	6	8	low	Р	Pollinated only by bumble bees
Turtlehead	Chelone glabra	WMP	late	white	3	sun to part shade	low	5	6.5	low	Р	
White Prairie Clover	Dalea candidum	MP, DMP, DSP, HP, MS	mid	white	3	sun	high	6.5	8.5	low	Р	
Purple Prairie Clover	Dalea purpureum	MP, DMP, DSP, HP, MS	early - mid	purple	3	sun	high	6.5	8.5	low	Р	
Showy Tick Trefoil	Desmodium canadense	CS, MS, DMP, MP, WMP	mid - late	pink	4	sun to part shade	moderate	5.5	6.5	low	Р	
Pale Purple Coneflower	Echinacea pallida	MS, HP, SDP, DMP, MP	mid	purple	4	sun	moderate	6	8	moderate	Р	
Rattlesnake Master	Eryngium yuccifolium	DMP, MP, WMP	mid - late	white	5	sun	moderate	6.5	7.5	low	Р	
Common Boneset	Eupatorium perfoliatum	CS, WP	late	white	5	sun	low	5.5	8	high	Р	
Bottle Gentian	Gentiana andrewsii	MP, WMP, WP	mid	blue	2	sun to part shade	low	5	6.5	low	Р	Pollinated only by bumble bees

Common Name	Scientific Name	Habitat	Bloom Period	Flower Color	*Height Mature (feet)	Light Needs	*Drought Toleranc e	*pH Min.	*pH Max	*Salinity Tolerance	Annual, Perennial, or Biennial	Notes
Wild Geranium	Geranium maculatum	MS	very early	purple	2	sun to shade	low	5.5	8.5	low	Р	Can dominate woodland sites
Sneezeweed	Helenium autumnale	CS, WP	late	yellow	5	sun to part shade	moderate	6	8	low	Р	
Showy Sunflower	Helianthus ×laetiflorus	MP, DMP, DSP	late	yellow	4	sun	high	5.5	8.5	moderate	Р	May be invasive
Tall Sunflower	Helianthus giganteus	WMP	late	yellow	10	sun	moderate	6.5	7.5	low	Р	May be invasive
Sawtooth Sunflower	Helianthus grosseserratus	WP, WMP	late	yellow	10	sun to part shade	high	6.5	7.5	moderate	Р	May be invasive
Rough Blazingstar	Liatris aspera	DMP, DSP, MS, SS	late	purple	4	sun	high	6.5	7.5	moderate	Р	
Prairie Blazingstar	Liatris pycnostachya	SS, CS, MP, WMP	mid – late	purple	4	sun	moderate	6.5	7.5	low	Р	
Marsh Blazingstar	Liatris spicata	WMP, MP	mid	purple	5	sun	moderate	6.5	7.5	moderate	Р	
Cardinal Flower	Lobelia cardinals	CS	mid – late	red	5	sun to part shade	low	6	7.5	low	Р	Visited by hummingbirds
Blue Lobelia	Lobelia siphilitica	WMP	late	blue	4	sun to part shade	low	6	7.5	low	Р	
Pale Spike Lobelia	Lobelia spicata	WMP	mid	purple	2	sun to part shade	moderate	6	7.5	low	Р	
Wild Lupine	Lupinus perennis	DMP, DSP, SS	early	blue	2	sun to part shade	high	6	7.5	low	Р	Host plant for Karner Blue butterfly
Winged Loosestrife	Lythrum alatum	WP, WMP	mid	purple	2	sun	low	5.5	8	low	Р	Wetland emergent
Wild Bergamot	Monarda fistulosa	WMP, MP, DMP, SDP, MS, SS	mid	blue	4	sun to part shade	moderate	6	8	low	Р	
Dotted Mint	Monarda punctata	SDP, SS	mid - late	white	2	sun to part shade	high	6	8	low	Р	
Smooth Penstemon	Penstemon digitalis	DSP, DMP, MP	early - mid	white	2	sun to part shade	moderate	6	8	low	Р	

Common Name	Scientific Name	Habitat	Bloom Period	Flower Color	*Height Mature (feet)	Light Needs	*Drought Toleranc e	*pH Min.	*pH Max	*Salinity Tolerance	Annual, Perennial, or Biennial	Notes
Pale Penstemon	Penstemon pallidus	DSP, DMP, MP	early - mid	white	2	sun to part shade	moderate	6	8	low	Р	
Obedient Plant	Physostegia virginiana	HP, WMP	mid - late	pink	4	sun	low	5.5	7.5	high	Р	
Mountain Mint	Pycnanthemum virginianum	CS, DMP, MP, WMP, WP	mid	white	3	sun to part shade	low	6	8	low	Р	
Rosinweed	Silphium integrifolium	WMP, MP, DMP,	mid - late	yellow	6	sun	moderate	6.5	8	moderate	Р	
Compass Plant	Silphium laciniatum	MP, DMP, DSP	mid	yellow	8	sun	high	6.5	8	moderate	Р	
Cup Plant	Silphium perfoliatum	WP,WMP,M P	mid	yellow	8	sun	moderate	6.5	7.5	moderate	Р	
Stiff Goldenrod	Solidago rigida	MP, DMP, DSP, HP	late	yellow	4	sun to part shade	high	5.5	7.5	high	Р	
Showy Goldenrod	Solidago speciosa	MP, DMP, DSP, HP, MS, SS	very late	yellow	4	sun	moderate	5.5	7.5	high	Р	
Smooth Blue Aster	Symphyotrichu m laeve	DMP, MP	late	blue	4	sun	high	5.5	7.5	high	Р	
New England Aster	Symphyotrichu m novae- angliae	MP, WMP, WP	very late	purple	4	sun to part shade	moderate	5.5	8	low	Р	
Silky Aster	Symphyotrichu m sericeum	HP, DSP, DMP	late	purple	2	sun to part shade	high	6	8	low	Р	
Spiderwort	Tradescantia ohiensis	MP, DMP, DSP, MS, SS	early - mid	blue	2	sun to part shade	moderate	6.5	7.5	low	Р	
Common Ironweed	Vernonia fasciculata	HP, WP, WMP	late	purple	8	sun to part shade	low	5.5	7.5	low	Р	
Culver's Root	Veronicastrum virginicum	WP, WMP, MP, DMP, SDP	mid	white	6	sun to shade	moderate	6.5	7.5	moderate	Р	

* Heights and tolerances may differ between populations, races, or ecotypes of the same species.
 ** Habitat: Wet Prairie = WP; Wet Mesic Prairie = WMP; Mesic Prairie = MP; Dry Mesic Prairie = DMP; Dry Sand Prairie = DSP; Hill Prairie = HP, Mesic Savanna = MS; Claypan Savanna = CS; Sand Savanna = SS

Table 2C Native Wisconsin Bunch Grasses for Pollinator Plantings

Common Name	Scientific Name	Habitat**	*Height Mature (feet)	Light Needs	*Drought Tolerance	*pH Min.	*pH Max.	*Salinity Tolerance	Notes
Side-Oats Grama	Bouteloua curtipendula	DMP, DSP, HP,	3	sun to part shade	high	6	8	high	
June Grass	Koeleria cristata	DMP, DSP, HP, CS, SS	2	sun to part shade	high	5.5	8	low	
Little Bluestem	Schizachyrium scoparium	MP, DMP, DSP, HP, MS, SS	3	sun	high	5	7.5	high	
Wool Grass	Scirpus cyperinus	WP, WMP	4	sun	low	5.5	7.5	high	
Prairie Dropseed	Sporobolus heterolepis	MP, DMP, SDP	3	sun	high	6	8	high	

* Heights and tolerances may differ between populations, races, or ecotypes of the same species.
** Habitat: Wet Prairie = WP; Wet Mesic Prairie = WMP; Mesic Prairie = MP; Dry Mesic Prairie = DMP; Dry Sand Prairie = DSP; Hill Prairie = HP, Mesic Savanna = MS; Claypan Savanna = CS; Sand Savanna = SS

Table 3
Insectary and Pollinator Friendly Cover Crops for Wisconsin

Common Name	Scientific Name	Bloom Period	Flower Color	*Height Mature (feet)	Light Needs	*Drought Tolerance	*pH Min.	*pH Max.	*Salinity Tolerance	Annual, Perennial, or Biennial	Notes
Canola	Brassica napus	early	yellow	1	sun	low	5.5	7	moderate	А	
Buckwheat	Fagopyrum esculentum	mid to late	white	1.5	sun	moderate	5.5	6.5	moderate	А	
White Lupine	Lupinus albus	early to mid	blue or white	3	sun	low	5	8	low	А	
Alfalfa	Medicago sativa	mid	purple	1.5	sun	moderate	6.5	7	moderate	P, A	Perennial and annual varieties
Alsike clover	Trifolium hybridum	early to mid	yellow	2	sun	low	6	7.5	low	P, A	
Crimson clover	Trifolium incarnatum	early	red	1	sun to part shade	low	6	7	low	А	
White clover	Trifolium repens	mid	white		sun to part shade	low	6	7	low	Р	

* Heights and tolerances may differ between populations, races, or ecotypes of the same species.

	Ta	ble 4		
Wisconsin	Garden	Plants	for	Pollinators

Common Name	Scientific Name	Bloom Period	Flower Color	*Height Mature (feet)	Light Needs	*Drought Tolerance	*pH Min.	*pH Max.	*Salinity Tolerance	Annual, Perennial, or Biennial	Notes
Yarrow	Achillea millefolium	mid to late	white	3	sun	high	5	6.5	high	Р	
Anise hyssop	Agastache rupestris	mid	purple	4	sun to part shade	low	6	8	moderate	Р	
Borage	Borago officinalis	early	blue	2	sun	low	6	7.5	moderate	А	
Calliopsis	Coreopsis tinctoria	mid to late	yellow	3	sun	high	6	7.5	low	А	
Cosmos	Cosmos bipinnatus	late	variable	5	sun	high	6.5	8.5	moderate	А	
Purple Coneflower	Echinacea purpurea	mid	purple	4	sun	medium	6	8	medium	р	
Fennel	Foeniculum vulgare	mid	yellow	2	sun	low	7	8	low	Р	
Sunflower	Helianthus annuus	late	yellow	3	sun	moderate	5.5	8	moderate	А	
Lavender	Lavandula spp.	early to late	purple	3	sun	moderate	6.5	7.5	moderate	Р	
Horehound	Marrunbium vulgare	early to mid	white	3	sun	low	6	8	low	Р	
Chamomile	Matricaria recutita	early	white	0.5	sun	moderate	5.5	7.5		А	
Spearmint	Mentha spicata	mid	white or pink	1	sun	low	6.5	7	low	Р	May become aggressive
Bergamot (Bee balm)	Monarda spp.	mid	blue	4	sun to part shade	medium	6	8	low	р	
Catmint	Nepeta spp.	mid	white or blue	1	sun to part shade	moderate	6	8	low	Р	May become aggressive
Basil	Ocimum spp.	mid	white	1	sun	moderate	4	8	low	А	
Oregano	Origanum spp.	mid	pink	1	sun	high	6.5	8	moderate	Р	
Penstemon	Penstemon spp.	early to mid	purple	3	sun to shade	moderate	6	9	high	Р	

Common Name	Scientific Name	Bloom Period	Flower Color	*Height Mature (feet)	Light Needs	*Drought Tolerance	*pH Min.	*pH Max.	*Salinity Tolerance	Annual, Perennial, or Biennial	Notes
Russian sage	Perovskia atriplicifolia	mid	blue	5	sun	moderate	6	7.5	high	Р	
Azalea	Rhododendron spp.	early	pink, purple, white	3	sun to part shade	low	5.5	7	low	Р	
Rosemary	Rosemarinus officnalis	late	blue	3	sun	high	6.5	7.5	moderate	Р	
Thyme	Thymus spp.	mid	pink	1	sun	moderate	6.5	8	moderate	Р	

* Heights and tolerances may differ between populations, races, or ecotypes of the same species.

Example 1 Native Seeding for Pollinators on Mesic Sites

The example seed mix below meets both the Wisconsin NRCS 327 Conservation Cover and 643 Restoration and Management of Rare and Declining Habitats. The mixture has 40 seeds per square foot of pure live seed (PLS) with 20 PLS per square foot of forbs and 4 lbs/ac of grasses with the predominant species being little bluestem and side-oats grama. Two and one half PLS per square foot of forbs are also legumes. There are at least 3 forbs in each bloom period with a variety of bloom colors.

Common Name	Scientific Name	PLS Oz/Ac	Period	Color			
FORBS							
Cream Wild Indigo	Baptisia bracteata	6.0	Early	White			
Smooth Penstemon	Penstemon digitalis	1.0	Early to Mid	White			
Spiderwort	Tradescantia ohiensis	2.0	Early to Mid	Blue			
Wild Bergamot	Monarda fistulosa	1.0	Mid	Blue			
Purple Prairie Clover	Dalea purpurea	6.0	Mid	Purple			
Pale Purple Coneflower	Echinacea pallida	6.0	Mid	Purple			
Culver's Root	Veronicastrum virginicum	0.2	Mid	White			
Butterflyweed,	Asclepias tuberosa	3.0	Mid	Orange			
Prairie Blazing Star	Liatris pycnostachya	4.0	Mid to Late	Purple			
Rattlesnake Master	Eryngium yuccifolium	6.0	Mid to Late	White			
New England Aster	Aster novae-angliae	2.0	Late	Purple			
Showy Sunflower	Helianthus laetiflorus	3.0	Late	Yellow			
Showy Goldenrod	Solidago speciosa	1.0	Late to Very Late	Yellow			
	Total Pounds:	2.6					
GRASSES*							
Big Bluestem	Andropogon gerardii	8.0					
Indian Grass	Sorgastrum nutans	8.0					
Little Bluestem	Schizachyrium scoparium	24.0					
Canada Wild Rye	Elymus canadensis	8.0					
Side-oats grama	Bouteloua curtipendula	16.0					
Total Pounds: 4.0							

TREES AND SHRUBS – Depending on the objective for the site, native species of trees and/or shrubs may be added to enhance the area for pollinators. For example, a few clumps of black willow, *Salix nigra*, and false indigobush, *Amorpha fruticosa*, could be added to the planting for more very early to mid season pollen sources.

Example 2 Native Seeding for Pollinators on Wet Mesic Sites

The example seed mix below meets both the Wisconsin NRCS 327 Conservation Cover and 643 Restoration and Management of Declining Habitats. The mixture has 30 seeds per square foot of pure live seed (PLS) with 20 PLS per square foot of forbs and 10 PLS per square foot of grasses with the predominant species being big bluestem, Canada wild rye ,and switchgrass. There are at least 3 forbs and shrubs in each bloom period with a variety of bloom colors.

Common Name	Scientific Name	PLS oz/ac	Bloom Period	Color
FORBS				
Marsh Marigold,	Caltha palustris	0.5	Early	Yellow
Wild Bergamot	Monarda fistulosa	2.0	Mid	Blue
Marsh Blazing Star	Liatris spicata	4.0	Mid	Purple
Culver's Root	Veronicastrum virginicum	0.2	Mid	White
White Wild Indigo	Baptisia alba	6.0	Mid	White
Winged Loosestrife	Lthrum alatum	0.1	Mid	Purple
Wild Senna,	Cassia hebecarpa	8.0	Mid	Yellow
Showy Tick Trefoil	Desmodium canadense	6.0	Mid to Late	Pink
New England Aster	Aster novae-angliae	1.5	Late	Purple
Common Ironweed	Vernonia fasciculata	3.0	Late	Purple
Cup Plant	Silphium perfoliatum	3.0	Late to Very Late	Yellow
	Total Pounds:	2.1		
GRASSES				
Big Bluestem	Andropogon gerardii	16.0	N/A	
Switch Grass	Panicum virgatum	32.0	N/A	
Prairie Cordgrass	Spartina pectinata	4.0	N/A	
Canada Wild Rye	Elymus canadensis	16.0	N/A	
	Total Pounds:	4.3		

Common Name	Scientific Name	Number/ac	Bloom Period	Color
SHRUBS**				
Black willow	Salix nigra	10 - 25	Very Early to Early	Yellow
False indigobush	Amorpha fruticosa	10 - 25	Early to Mid	Purple

** Plant shrubs in small clumps.

Example 3 Native Seeding for Pollinators on Dry Mesic Sites

The example seed mix below meets both the Wisconsin NRCS 327 Conservation Cover and 643 Restoration and Management of Declining Habitats. The mixture has 40 seeds per square foot of pure live seed (PLS) with 20 PLS per square foot of forbs and 4 PLS per square foot of grasses with the predominant species being little bluestem and side-oats grama. Three PLS per square foot of forbs are also legumes. There are at least 3 forbs in each bloom period with a variety of bloom colors.

Common Name	Scientific Name	PLS Oz/Ac	Bloom Period	Color
FORBS				
Cream Wild Indigo	Baptisia bracteata	4.0	Early	White
Smooth Penstemon	Penstemon digitalis	1.0	Early to Mid	White
Common Spiderwort	Tradescantia ohiensis	3.0	Early to Mid	Blue
Wild Bergamot	Monarda fistulosa	1.0	Mid	Blue
Butterflyweed	Asclepias tuberosa	2.0	Mid	Orange
Purple Prairie Clover	Dalea purpureum	6.0	Mid	Purple
Pale Purple Coneflower	Echinacea pallida	6.0	Mid	Purple
Culver's Root	Veronicastrum virginicum	0.2	Mid	White
Rattlesnake Master	Eryngium yuccifolium	6.0	Mid to Late	White
Showy Tick Trefoil	Desmodium canadense	6.0	Mid to Late	Pink
Smooth Blue Aster	Aster laevis	2.5	Late	Blue
Stiff Goldenrod	Solidago rigida	1.0	Late	Yellow
Showy Sunflower	Helianthus laetiflorus	3.0	Late	Yellow
	Total Pounds:	2.7		
GRASSES*				
Big Bluestem	Andropogon gerardii	8.0	N/A	
Side-Oats Grama	Bouteloua curtipendula	24.0	N/A	
Little Bluestem	Schizachyrium scoparium	24.0	N/A	
Indiangrass	Sorghastrum nutans	8.0	N/A	
Switchgrass	Panicum virgatum	4.0	N/A	
June Grass	Koeleria cristata	2.0		
Prairie Drop Seed	Sporobolus heterolepis	2.0		
	Total Pounds:	4.5		

TREES AND SHRUBS – Depending on the objective for the site, native species of trees and/or shrubs may be added to enhance the area for pollinators. For example, a few clumps of hawthorn, *Crataegus spp.*, and New Jersey tea, *Ceanothus americanus*, could be added to the planting for more early to mid season pollen sources.

ADDITIONAL INFORMATION

In addition to this document, information on pollinator habitat conservation is available through a number of other publications, websites, and organizations.

Publications

Black, S.H., N. Hodges, M. Vaughan and M. Shepherd. 2008. Pollinators in Natural Areas: A Primer on Habitat Management

http://www.xerces.org/pubs_merch/Managing_Habitat _for_Pollinators.htm

Shepherd, M., S. Buchmann, M. Vaughan, and S. Black. 2003. *Pollinator Conservation Handbook*. Portland, OR: The Xerces Society for Invertebrate Conservation. 145 pp.

ES EPA and USDA. 1991. *Applying Pesticides Correctly, A Guide for Private and Commercial Applicators*.

USDA Agriculture Extension Service. USDA, NRCS and FS, Agroforestry Note – 32: "Agroforestry: Sustaining Native Bee Habitat for Crop Pollination," Vaughan, Mace and Black, Scott Hoffman, 2006. USDA National Agroforestry Center. http://www.unl.edu/nac/agroforestrynotes/an32g06.pdf

USDA, NRCS and FS, Agroforestry Note – 33: "Agroforestry: Improving Forage for Native Bee Crop Pollinators," Vaughan, Mace and Black, Scott Hoffman, 2006. USDA National Agroforestry Center. http://www.unl.edu/nac/agroforestrynotes/an33g07.pdf

USDA, NRCS and FS, Agroforestry Note – 34: "Enhancing Nest Sites for Native Bee Crop Pollinators," Vaughan, Mace and Black, Scott Hoffman, 2006. USDA National Agroforestry Center. http://www.unl.edu/nac/agroforestrynotes/an34g08.pdf

USDA, NRCS and FS, Agroforestry Note – 35: "Pesticide Considerations for Native Bees in Agroforestry," Vaughan, Mace and Black, Scott Hoffman, 2006. USDA National Agroforestry Center. http://www.unl.edu/nac/agroforestrynotes/an35g09.pdf

USDA-NRCS. Conservation Security Program Job Sheet: "Nectar Corridors," Plant Management EPL 41. <u>www.wv.nrcs.usda.gov/programs/csp/06csp/JobSheets/</u> <u>nectarCorridorsEL41.pdf</u> USDA, NRCS, Idaho Plant Material Technical Note #2, "Plants for Pollinators in the Intermountain West" <u>ftp://ftp-</u>

fc.sc.egov.usda.gov/ID/programs/technotes/pollinators 07.pdf

USDA, NRCS, "Creating Native Landscapes in the Northern Great Plains and Rocky Mountains." 2001. 16p.

http://www.mt.nrcs.usda.gov/technical/ecs/plants/xeris cp/

USDI, BLM, Technical Reference 1730-3. "Landscaping with Native Plants of the Intermountain Region." 2003. 47pp. <u>http://www.id.blm.gov/publications/TR1730-</u> <u>3/index.htm</u>

Vaughan, M., M. Shepherd, C. Kremen, and S. Black. 2007. Farming for Bees: Guidelines for Providing Native Bee Habitat on Farms. 2nd Ed. Portland, OR: Xerces Society for Invertebrate Conservation. 44 pp. <u>http://www.xerces.org/Pollinator_Insect_Conservation</u> /Farming_for_Bees_2nd_edition.pdf

See "Native Pollinators", "Butterflies", "Bats", and "Ruby-throated Hummingbird" Fish and Wildlife Habitat Management Leaflet Numbers 34, 15, 5, and 14 respectively. http://www.whmi.nrcs.usda.gov/technical/leaflet.htm

Web-Sites

1. POLLINATOR INFORMATION

- The Xerces Society Pollinator Conservation Program
 <u>http://www.xerces.org/Pollinator_Insect_Conservation</u>
- USDA ARS Logan Bee Lab <u>www.loganbeelab.usu.edu</u>
- Logan Bee Lab list of plants attractive to native bees <u>http://www.ars.usda.gov/Main/docs.htm?docid=12052</u>
- The Pollinator Partnership <u>http://www.pollinator.org/</u>
- U.S. Forest Service Pollinator Information
 <u>http://www.fs.fed.us/wildflowers/pollinators/index.shtml</u>
- U.S. Fish & Wildlife Service Information <u>http://www.fws.gov/pollinators/Index.html</u>
- Pollinator friendly practices
 <u>http://www.nappc.org/PollinatorFriendlyPractices.pdf</u>
- Urban bee gardens http://nature.berkeley.edu/urbanbeegardens/index.html

2. HABITAT RESTORATION WITH NATIVE PLANTS

- Considerations in choosing native plant materials <u>http://www.fs.fed.us/wildflowers/nativeplantmater</u> ials/index.shtml
- Selecting Native Plant Materials for Restoration <u>http://extension.oregonstate.edu/catalog/pdf/em/e</u> <u>m8885-e.pdf</u>
- Native Seed Network <u>http://www.nativeseednetwork.org/</u> has good species lists by ecological region and plant communities
- Prairie Plains Resource Institute has extensive guidelines for native plant establishment using agricultural field implements and methods <u>http://www.prairieplains.org/restoration_.htm</u>

ACKNOWLEDGEMENTS

This Pollinator habitat technical note was written in July 2008 by Mace Vaughan and Eric Mader of the Xerces Society for Invertebrate Conservation. Please contact Robert Weihrouch at

(robert.weihrouch@wi.usda.gov) or Judy Derricks (judy.derricks@wi.usda.gov) with suggested improvements or questions pertaining to this publication. Financial support to the Xerces Society for the development of this technical note was provided by the NRCS Agricultural Wildlife Conservation Center and private foundations.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.